太阳拥有8颗行星,按其构成可以分为固态的岩石行星和气态巨行星。其中水星、金星、地球和火星属于岩石行星,被称之为类地行星;余下的木星、土星、天王星和海王星属于气态巨行星,
太阳拥有8颗行星,按其构成可以分为固态的岩石行星和气态巨行星。其中水星、金星、地球和火星属于岩石行星,被称之为类地行星;余下的木星、土星、天王星和海王星属于气态巨行星,被称之为类木行星。
类木行星不仅是气态的,质量和体积也很大。类木行星普遍比类地行星大。需要注意,气态行星并非完全由气体构成,其内核仍然是固态的。类木行星的主要构成成分是氢和氦,这也是太阳的主要构成成分。那么地球等岩石行星的岩石又是如何形成的呢?
了解地球
地球是太阳系中最大的岩石类行星,而水星是最小的岩石行星,水星的质量只有地球质量的5.6%。不过,随便一颗类木行星都要比地球大上许多。天王星是质量最小的类木行星,但其质量仍然是地球质量的14.5倍。而木星的质量就很夸张,是其它七大行星质量总和的2.5倍。
地球表层被分为4大圈层,除去大气圈、水圈和生物圈,还有岩石圈。从地表到地心又可以分为地壳、地幔、地核三大圈层。一般来说,岩石圈就是指地壳,有时地幔上半部分也被划分为岩石圈。
地壳很薄,上层岩石的主要成分是硅铝氧化物,下层岩石的主要是成分是硅镁氧化物。地幔最厚,越靠近地核,地幔中铁和镍的含量就越高。地幔顶部有一个软流层,由于大量的放射性物质聚集在这儿,释放出了大量的热量,岩石被融化形成熔岩,岩浆就源于此。地核主要由铁和镍构成,外地核是液态的,而内地核是固态的。地球的磁场就源于外地核中液态金属的流动。地壳地幔中的物质并没有明显的分界现象,而是呈相互渗透的趋势。
地球上的岩石
岩石是由若干种矿物组成的混合物,具有稳定的固体形态。由一种矿物组成的岩石叫作单矿岩,如石英岩;多种矿物组成的岩石叫作复矿岩,比如花岗岩就由石英、长石和云母等矿物组成。
岩石的分类比较复杂,按照形成原理,地球上的岩石可分为三大类:火成岩(又叫做岩浆岩)、变质岩、沉积岩。这三类岩石在一定条件下可以相互转化。
火成岩就是岩浆冷却后形成的,玄武岩和花岗岩就是最典型的火成岩。变质岩是某些岩石在高温高压等条件作用下,岩石中的矿物成分或者结构发生了变化,从而产生的新岩石,大理岩就属于变质岩。沉积岩就是各种矿物在沉积作用下形成的岩石,主要包括石灰岩、砂岩、页岩等,它们遍布于地球表面,绝大多数生物化石及矿产就位于沉积岩中。
说来说去,它们都是由原子构成的,原子的种类按元素划分有100多种,而地球上总共存在90多种天然元素。地球上的岩石基本上都含有二氧化硅(SIO2),此外还含有镁、铝、钙、铁等元素。据统计,仅氧、镁、铁、硅、硫、铝、钙这7种元素就占地球总质量的97%,地球上的岩石主要就是由这几种元素构成的。
从太阳系的起源说起
太阳在太阳系中占绝对统治地位,太阳的质量占太阳系所有物质总质量的99%,太阳的起源便是太阳系的起源,八大行星等其它小天体都是太阳的附属。
关于太阳系的起源,最主流的观点便是星云说。最早提出该观点的人是德国哲学家康德,不过当时并没有引起什么反响,之后的拉普拉斯从数学和力学角度提出了更加完善的理论,该观点才正式被人们所接受。
地球和太阳差不多都诞生于45亿年前,太阳和太阳系内的天体几乎都起源于同一片星云。星云由稀薄的气体和尘埃构成,这些气体分子主要是氢、其次是氦,尘埃则由金属和非金属微粒构成。在引力的作用下,这些气体、尘埃汇聚成团,在相互的碰撞过程中像滚雪球一样越积越大,核心处的温度压力越来越高,最终点燃了氢聚变反应,于是一颗恒星便诞生了。原恒星盘上的余下物质便形成了行星及其它小天体。
如上图所示,太阳诞生之初太阳系内一片混沌。
银河系内的恒星估计有2000亿颗,很多都是多星系统,其中75%是双星系统,就是由两颗恒星构成的恒星系统,这种条件下很难存在行星。以太阳系为例,木星的成分就与太阳的成分很相似,如果木星的质量再大上85倍左右,木星将会成为一颗恒星,而不是现在的气态行星。很幸运,太阳系形成之初,木星并没有足够的质量转化为恒星,否则太阳系也将是一个双星系统,估计也就没有地球什么事了。
行星探测器传回的数据表明,木星、土星等气态行星也拥有固态的内核。如果木星抛去外部的氢和氦等气态物质,余下的内核其实就是一颗岩质天体。太阳是一个高温等离子体,其实太阳也拥有固态铁镍质内核。
岩石行星更靠近太阳,而气态行星离太阳较远,这是因为氢、氦等元素较轻易挥发,在太阳辐射的长期照射下,便被驱赶到了太阳系外侧。这也就很好理解类地行星和类木行星在太阳系的分布情况了。
一切始于爆炸
看了科探菌的介绍,大家应该又产生了其它的疑惑。为啥星体都含有铁质核心?而岩石又主要由固定的几种元素构成?这得从宇宙中元素的起源和元素的丰度(元素的相对含量,通常以硅元素作为基准)说起。
现有的证据表明,宇宙很有可能起源于一场大爆炸。随着宇宙的扩张,温度逐渐下降,基本粒子开始结合形成原子,其中最简单、数量最多的便是氢原子。这些氢元素形成了宇宙中的第1批恒星,通过核聚变反应,在恒星的大熔炉中又诞生了其它较轻的元素。通常碳、氮、氧在恒星核聚变反应过程中的产出比较大。因为铁的结合能最高,很难发生核反应,因此恒星工厂也只能止步于铁。其它比铁还重的元素则诞生于恒星死亡的那一刻,也就是超新星爆发的那一刻,超新星爆发是宇宙中最壮烈的爆炸之一。只有在这样的高温高压条件下,才能聚变出金、银这种重型元素。
上图为超新星爆发后的遗迹
不管是宇宙大爆炸,还是恒星爆炸,总之岩石的形成与爆炸有关。人类已经在宇宙中发现了100多种元素,除了氢,其它元素不是形成于恒星内部,就是形成于恒星爆炸之时。
岩石由哪些成分构成早已注定好,宇宙中元素的丰度及其化学性质决定了岩石的可能种类。由于金、银等重元素在宇宙中的形成条件极为苛刻,因此它们在宇宙中的丰度很小,地球上岩石矿物中的含金量也注定不会太高。铁元素在宇宙中的丰度很高,并且还在增长,那是因为不仅轻元素会聚变为铁,重元素也会衰变为铁。恒星不断的将氢聚变为氦,因此氦在宇宙中的丰度也很高。按质量算,宇宙中71%都是氢,27%是氦,余下的2%是其它元素。
上图为宇宙中部分元素的丰度分布情况
宇宙中元素的丰度除了与元素在恒星中的合成过程有关,还与该元素的原子核结构的稳定性有关。通常原子序数为偶数的元素的丰度大大高于相邻的奇数元素;质量数为4的倍数的核素,其丰度也较高。
世界真奇妙,看似风马牛不相及的事物之间却存在联系。从石器时代到铁器时代,人类文明的发展进程竟然与宇宙中元素的分布规律存在联系,岩石的形成也与此有关。
热爱科学的朋友,欢迎关注我。
太阳拥有8颗行星,按其构成可以分为固态的岩石行星和气态巨行星。其中水星、金星、地球和火星属于岩石行星,被称之为类地行星;余下的木星、土星、天王星和海王星属于气态巨行星,被称之为类木行星。
类木行星不仅是气态的,质量和体积也很大。类木行星普遍比类地行星大。需要注意,气态行星并非完全由气体构成,其内核仍然是固态的。类木行星的主要构成成分是氢和氦,这也是太阳的主要构成成分。那么地球等岩石行星的岩石又是如何形成的呢?
了解地球
地球是太阳系中最大的岩石类行星,而水星是最小的岩石行星,水星的质量只有地球质量的5.6%。不过,随便一颗类木行星都要比地球大上许多。天王星是质量最小的类木行星,但其质量仍然是地球质量的14.5倍。而木星的质量就很夸张,是其它七大行星质量总和的2.5倍。
地球表层被分为4大圈层,除去大气圈、水圈和生物圈,还有岩石圈。从地表到地心又可以分为地壳、地幔、地核三大圈层。一般来说,岩石圈就是指地壳,有时地幔上半部分也被划分为岩石圈。
地壳很薄,上层岩石的主要成分是硅铝氧化物,下层岩石的主要是成分是硅镁氧化物。地幔最厚,越靠近地核,地幔中铁和镍的含量就越高。地幔顶部有一个软流层,由于大量的放射性物质聚集在这儿,释放出了大量的热量,岩石被融化形成熔岩,岩浆就源于此。地核主要由铁和镍构成,外地核是液态的,而内地核是固态的。地球的磁场就源于外地核中液态金属的流动。地壳地幔中的物质并没有明显的分界现象,而是呈相互渗透的趋势。
地球上的岩石
岩石是由若干种矿物组成的混合物,具有稳定的固体形态。由一种矿物组成的岩石叫作单矿岩,如石英岩;多种矿物组成的岩石叫作复矿岩,比如花岗岩就由石英、长石和云母等矿物组成。
岩石的分类比较复杂,按照形成原理,地球上的岩石可分为三大类:火成岩(又叫做岩浆岩)、变质岩、沉积岩。这三类岩石在一定条件下可以相互转化。
火成岩就是岩浆冷却后形成的,玄武岩和花岗岩就是最典型的火成岩。变质岩是某些岩石在高温高压等条件作用下,岩石中的矿物成分或者结构发生了变化,从而产生的新岩石,大理岩就属于变质岩。沉积岩就是各种矿物在沉积作用下形成的岩石,主要包括石灰岩、砂岩、页岩等,它们遍布于地球表面,绝大多数生物化石及矿产就位于沉积岩中。
说来说去,它们都是由原子构成的,原子的种类按元素划分有100多种,而地球上总共存在90多种天然元素。地球上的岩石基本上都含有二氧化硅(SIO2),此外还含有镁、铝、钙、铁等元素。据统计,仅氧、镁、铁、硅、硫、铝、钙这7种元素就占地球总质量的97%,地球上的岩石主要就是由这几种元素构成的。
从太阳系的起源说起
太阳在太阳系中占绝对统治地位,太阳的质量占太阳系所有物质总质量的99%,太阳的起源便是太阳系的起源,八大行星等其它小天体都是太阳的附属。
关于太阳系的起源,最主流的观点便是星云说。最早提出该观点的人是德国哲学家康德,不过当时并没有引起什么反响,之后的拉普拉斯从数学和力学角度提出了更加完善的理论,该观点才正式被人们所接受。
地球和太阳差不多都诞生于45亿年前,太阳和太阳系内的天体几乎都起源于同一片星云。星云由稀薄的气体和尘埃构成,这些气体分子主要是氢、其次是氦,尘埃则由金属和非金属微粒构成。在引力的作用下,这些气体、尘埃汇聚成团,在相互的碰撞过程中像滚雪球一样越积越大,核心处的温度压力越来越高,最终点燃了氢聚变反应,于是一颗恒星便诞生了。原恒星盘上的余下物质便形成了行星及其它小天体。
如上图所示,太阳诞生之初太阳系内一片混沌。
银河系内的恒星估计有2000亿颗,很多都是多星系统,其中75%是双星系统,就是由两颗恒星构成的恒星系统,这种条件下很难存在行星。以太阳系为例,木星的成分就与太阳的成分很相似,如果木星的质量再大上85倍左右,木星将会成为一颗恒星,而不是现在的气态行星。很幸运,太阳系形成之初,木星并没有足够的质量转化为恒星,否则太阳系也将是一个双星系统,估计也就没有地球什么事了。
行星探测器传回的数据表明,木星、土星等气态行星也拥有固态的内核。如果木星抛去外部的氢和氦等气态物质,余下的内核其实就是一颗岩质天体。太阳是一个高温等离子体,其实太阳也拥有固态铁镍质内核。
岩石行星更靠近太阳,而气态行星离太阳较远,这是因为氢、氦等元素较轻易挥发,在太阳辐射的长期照射下,便被驱赶到了太阳系外侧。这也就很好理解类地行星和类木行星在太阳系的分布情况了。
一切始于爆炸
看了科探菌的介绍,大家应该又产生了其它的疑惑。为啥星体都含有铁质核心?而岩石又主要由固定的几种元素构成?这得从宇宙中元素的起源和元素的丰度(元素的相对含量,通常以硅元素作为基准)说起。
现有的证据表明,宇宙很有可能起源于一场大爆炸。随着宇宙的扩张,温度逐渐下降,基本粒子开始结合形成原子,其中最简单、数量最多的便是氢原子。这些氢元素形成了宇宙中的第1批恒星,通过核聚变反应,在恒星的大熔炉中又诞生了其它较轻的元素。通常碳、氮、氧在恒星核聚变反应过程中的产出比较大。因为铁的结合能最高,很难发生核反应,因此恒星工厂也只能止步于铁。其它比铁还重的元素则诞生于恒星死亡的那一刻,也就是超新星爆发的那一刻,超新星爆发是宇宙中最壮烈的爆炸之一。只有在这样的高温高压条件下,才能聚变出金、银这种重型元素。
上图为超新星爆发后的遗迹
不管是宇宙大爆炸,还是恒星爆炸,总之岩石的形成与爆炸有关。人类已经在宇宙中发现了100多种元素,除了氢,其它元素不是形成于恒星内部,就是形成于恒星爆炸之时。
岩石由哪些成分构成早已注定好,宇宙中元素的丰度及其化学性质决定了岩石的可能种类。由于金、银等重元素在宇宙中的形成条件极为苛刻,因此它们在宇宙中的丰度很小,地球上岩石矿物中的含金量也注定不会太高。铁元素在宇宙中的丰度很高,并且还在增长,那是因为不仅轻元素会聚变为铁,重元素也会衰变为铁。恒星不断的将氢聚变为氦,因此氦在宇宙中的丰度也很高。按质量算,宇宙中71%都是氢,27%是氦,余下的2%是其它元素。
上图为宇宙中部分元素的丰度分布情况
宇宙中元素的丰度除了与元素在恒星中的合成过程有关,还与该元素的原子核结构的稳定性有关。通常原子序数为偶数的元素的丰度大大高于相邻的奇数元素;质量数为4的倍数的核素,其丰度也较高。
世界真奇妙,看似风马牛不相及的事物之间却存在联系。从石器时代到铁器时代,人类文明的发展进程竟然与宇宙中元素的分布规律存在联系,岩石的形成也与此有关。
热爱科学的朋友,欢迎关注我。
太阳系的行星系统中有八颗行星。质量由大到小的顺序是木星、土星、海王星、天王星、地球、金星、火星、水星。比地球重的木星、土星、海王星、天王星都是气态巨行星,所以地球是太阳系最大的岩石行星。因为岩石行星的质量上限约为地球的10倍,如果质量进一步增大,一方面行星会吸引更多的大气层,使大气层特别厚,进而使大气层底部的压力变得特别大,再将下面的气体压缩成液体,从而使行星无法拥有坚固的岩石表面,成为气态巨行星。太阳系八大行星中,排名第四的天王星质量是地球的14.5倍,所以它不可能是一颗岩石行星,而是一颗气体巨行星。
一年对我们所有人来说都是很长的时间,但这只是地球历史上一个微不足道的时刻。地质学家发现,覆盖原始地壳的层状岩层是地球几十亿年演化留下的石书,地质学上称之为地层。地层从最古老的地质时代,一层又一层地到达地表。先形成的地层在下面,后形成的地层在上面。越靠近地层上部,形成年龄越短。地层就像一本记录地球历史的书。地层中的岩石和化石就像这本书里的话。通过用现代科学方法测量古代岩石,那么人们用什么科学方法计算地球的年龄呢?目前测量岩石中放射性元素及其蜕变产生的同位素含量的方法被用作测量地球年龄的计时器。人们利用放射性元素蜕变的特征来计算岩石的年龄。
放射性元素经历蜕变时速度稳定,不受外界条件影响。在一定时期内,一定量的放射性元素,分裂多少部分,产生多少新物质,都有确切的数字。例如一克铀在一年内分裂成铅和氦。因此,我们可以根据岩石现在含有多少铀和铅来计算岩石的年龄。地壳是由岩石组成的,这样我们就可以知道地壳的年龄。地壳的年龄并不等于地球的实际年龄,因为在地壳形成之前,地球一般要经历一个表面处于熔融状态的时期。海洋中出现了成千上万的动物,海洋无脊椎动物空前繁荣。未来出现了鱼形动物,鱼大量繁殖。一种爬行有鳍的鱼类出现并登陆陆地,成为陆地脊椎动物的祖先。两栖动物也出现了。北半球的陆地上出现过蕨类植物,有的高达30多米。这些高大茂密的森林后来变成了广阔的煤田。
计算地球年龄的方法主要有岩石形成法、化石法和放射性元素嬗变法。据鉴定,地球上最古老的岩石是在格陵兰岛西部戈特哈布地区发现的阿米祖克片麻岩,因此,太阳系的大多数成员,包括地球,都是同时形成的。按照人类历史上划分朝代的方法,地球自形成以来可分为五代,分别是太古代、元古代、古生代、中生代和新生代。有些世代进一步分为几个时期。不同的地质时代有不同的特点。地球表面形成了原始的岩石圈、水圈和大气。但当时地壳不稳定,火山活动频繁,岩浆遍地,海域辽阔,陆地覆盖着光秃秃的群山。这时是铁矿石形成的重要时代,最低级的原始生命开始出现。地球的大部分仍然被海洋覆盖着。后期,地球上出现了大面积的陆地。元古代的意思是原始生物的时代,当时出现了海藻和海洋无脊椎动物。意味着古代生活的时代。