NgAgo是格氏嗜盐碱杆菌中的蛋白质(NatronobacteriumgregoryiArgonaute)为基础的有别于CRISPR/Cas9的新系统,是基于DNA引导的基因组编辑工具,不像CRISPR位点那样需要PAM识别序列
NgAgo-gDNA技术是以DNA作为引导工具的基因编辑技术,该技术因为河北科技大学副教授韩春雨及其研究小组发表了论文之后而获得较高的关注。NgAgo-gDNA技术的工作原理与CRISPR-Cas9技术有些类似,都是在引导工具的引导下,令核酸酶对特定位点的基因序列进行切割,从而进行基因编辑。不同的是NgAgo-gDNA技术中所用到的引导工具是一段引导DNA(gDNA)而不是CRISPR-Cas9技术中的RNA。由于也不需要通过蛋白(如锌指蛋白)来寻找需要替换的序列,因此,NgAgo-gDNA技术与CRISPR-Cas9技术一样,较之前的基因编辑技术,在操作上要简单方便得多,利于其在应用中的推广。NgAgo-gDNA技术所用的核酸酶是NgAgo,一种存在于格氏嗜盐碱杆菌(Natronobacteriumgregoryi)中的Ago内切核酸酶蛋白。Ago核酸酶最初是由荷兰科学家发现其可以有效地利用单链DNA作为短介质,去相对精准地切割基因组靶点。而最初的研究的局限性在于实验所需要的温度在65-75摄氏度,不能在生理条件下完成。NgAgo-gDNA技术可能比CRISPR-Cas9技术拥有更多优势,与CRISPR-Cas9技术相比,NgAgo-gDNA技术可编辑的靶位点的选择范围更大。因为Cas9需要与基因组上19个碱基配对,并要求在这组碱基后紧邻一个特定的三碱基序列(PAM序列),一定程度上限制了靶位点的选择范围,而NgAgo-gDNA技术中靶位点的选择则不受PAM序列的限制,编辑对象所受限制更小,几乎能编辑基因组内任何位置。同时也需要提一下CRISPR-Cas9。CRISPR-Cas9,一种基因治疗法,这种方法能够通过DNA剪切技术治疗多种疾病。2014年4月15日,获得了美国专利与商标局关于CRISPR的第一个专利授权。专利权限包括在真核细胞或者任何细胞有细胞核的物种中使用CRISPR。这意味着拥有在除细菌之外的所有生物,包括老鼠、猪和人身上使用CRISPR的权力。