变异系数 相对标准偏差,标准差与资料变异度

variability被称作变异性或者可变性,它描述了数据点彼此之间以及距分布中心的距离。
可变性有时也称为扩散或者分散。 因为它告诉你点是倾向于聚集在中心周围还是更广泛地分

本文最后更新时间:  2023-05-10 02:30:38

variability被称作变异性或者可变性,它描述了数据点彼此之间以及距分布中心的距离。

可变性有时也称为扩散或者分散。 因为它告诉你点是倾向于聚集在中心周围还是更广泛地分散。

低变异性是理想的,因为这意味着可以根据样本数据更好地预测有关总体的信息。 高可变性意味着值的一致性较低,因此更难做出预测。在统计学中,我们的目标是测量一组特定数据或一个分布的变异性。简单来说,如果一个分布中的数据值是相同的,那么它没有变异性。

上图中尽管数据服从正态分布,但每个样本都有不同的分布。 样品 A 的变异性最大,而样品 C 的变异性最小。

可以使用多种不同的方式对变异度进行度量

极差(Range)

极差,又称全距,可以显示数据从分布中的最低值到最高值的分布。

例如,考虑以下数字:1、3、4、5、5、6、7、11。对于这组数字,极差是 11-1 或 10。

极差的度量仅使用了 2 个数字因此受异常值影响很大,并且不会提供有关值分布的任何信息。 所以它最好与其他方法结合使用。

四分位距(Interquartile range)

四分位距又被称作四分差,可以提供数据分布中间的分布。

对于从低到高排序的任何分布,四分位距包含数据中一半的值。 第一个四分位数 (Q1) 包含前 25% 的值,而第四个四分位数 (Q4) 包含最后 25% 的值。

它衡量数据如何围绕均值分布。 基本公式为:IQR = Q3 - Q1

就像极差一样,四分位距在其计算中仅使用 2 个值。 但是IQR受异常值的影响较小:这2个值来自数据集的中间一半,所以不太可能是极端分数。

小知识:每个分布都可以使用五个数字摘要进行组织:

最低值Q1:第 25 个百分位Q2:中位数Q3:第 75 个百分位最高值 (Q4)

方差(Variance)

方差表示数据集的分布范围,但它是一个抽象数字。它反映了数据集中的分散程度。 数据越分散,方差与均值的关系就越大。

小方差 - 数据点往往非常接近均值且彼此非常接近高方差 - 数据点与均值和彼此之间非常分散零方差——所有数据值都相同标准差(Standard Deviation)

标准偏差是数据集中的平均变异量。 它平均表示每个数据点与平均值相差多远。标准差越大,数据集的可变性越大。

为什么使用 n - 1 作为样本标准差?

当拥有总体数据时可以获得总体标准差的准确值。 可以从每个总体成员收集数据,因此标准差反映了分布(总体)中的精确变异量。

但当无法获得所有数据时,就可以对整体数据进行抽样(抽样方式这就不详细介绍)。抽样的结果就被称作样本,样本的作用是对总体的数据进行统计推断的。当使用样本数据时,样本标准差始终用作总体标准差的估计值。 在这个公式中使用 n 往往会给你一个有偏差的估计,它总会低估可变性。

将样本 n 减少到 n - 1 会使标准偏差人为地变大,从而提供对变异性的保守估计。虽然这不是无偏估计,但它是对标准差的偏少估计:高估而不是低估样本的可变性更好。

标准差低 - 数据点往往接近平均值 标准差高 - 数据点分布在大极差的值上

什么是变异性的最佳衡量标准?

可变性的最佳衡量标准取决于不同衡量标准和分布水平。

对于在序数水平上测量的数据,极差和四分位距是唯一合适的变异性度量。

对于更复杂的区间和比率的数据,标准差和方差也适用。

对于正态分布,可以使用所有度量。 但标准差和方差是首选,因为它们考虑了整个数据集,但这也意味着它们很容易受到异常值的影响。

对于偏态分布或具有异常值的数据集,四分位距是最好的度量。 它受极值影响最小,因为它侧重于数据集中间的部分。

作者;Ashish Kumar Singh

关于极差、方差、标准差

极差是指一组测量值内最大值与最小值之差,又称范围误差或全距,以R表示。它是标志值变动的最大范围,它是测定标志变动的最简单的指标。
极差没有充分利用数据的信息,但计算十分简单,仅适用样本容量较小(n<10)情况。
方差是各个数据与平均数之差的平方和的平均数。在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。
方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,是各数据偏离平均数的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合 {0,5,9,14} 和 {5,6,8,9} 其平均值都是 7 ,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。

极差,标准差,方差各是什么

极差是指一组数据内的最大值和最小值之间的差异。平均差是说明集中趋势的,标准差是说明一组数据的离中趋势的。一组数据中各数据与平均数的差的平方和的平均数叫做这组数据的方差;极差越大,平均差的代表性越小,反之亦然;标准差越大,平均差的代表性越小,反之亦然。方差的算术平方根=标准差
平均数公式为:
平均数=(a1+a2+…+an)/n
如:
3,4,5的平均数为:
(3+4+5)/3=4
中位数 是数据排序后,位置在最中间的数值比如有 1 4 7 11 13 中位数就是7 M的位置=(1+n)/2
众数 就是在一排数字中,出现次数最多的数字
方差=(每个样本-平均值)的平方的和
标准差:因为有两个定义,用在不同的场合:
如是总体,标准差公式根号内除以n,
如是样本,标准差公式根号内除以(n-1),
极差=最大值-最小值
缘分测试八字合婚测桃花运月老姻缘
温馨提示:内容均由网友自行发布提供,仅用于学习交流,如有版权问题,请联系我们。