双曲线定义 双曲线定义的应用

本篇文章给大家谈谈双曲线定义,以及双曲线定义的应用对应的知识点,希望对各位有所帮助。本文目录一览:
1、双曲线的多个定义


2、双曲线定义


3、双曲线的定义

双曲线的多个

本文最后更新时间:  2023-03-06 22:20:19

本篇文章给大家谈谈双曲线定义,以及双曲线定义的应用对应的知识点,希望对各位有所帮助。

本文目录一览: 1、双曲线的多个定义 2、双曲线定义 3、双曲线的定义 双曲线的多个定义

双曲线的四种定义

双曲线第一定义:平面内,到两个定点的距离之差的绝对值为常数2a(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点,两焦点之间的距离称为焦距,用2c表示。

【例1】设圆C1:(x+√5)2+y2=4与圆C2:(x-√5)2+y2=4,动圆C与圆C1外切,与圆C2内切.求动圆C的圆心轨迹L的方程;

【分析】(1)设动圆圆心M(x,y),半径为r,则|MC1|=r+2,|MC2|=r﹣2,可得|MC1|﹣|MC2|=r+2﹣r+2=4<|C1C2|,利用双曲线的定义,即可求动圆圆心的轨迹方程.

【解答】解:(1)设动圆圆心M的坐标为M(x,y),半径为r,

则|MC1|=r+2,|MC2|=r﹣2,

∴|MC1|﹣|MC2|=r+2﹣r+2=4<|C1C2|=2,

由双曲线的定义知,点M的轨迹是以C1、C2为焦点的双曲线的右支,且2a=4,a=2,b=1,

双曲线的方程为:x2/4-y2=1(x≥2);

【点评】通过圆与圆的位置关系,消除动圆半径后符合双曲线的定义,通过定义直接写出方程.

双曲线第二定义(统一定义):平面内,到给定一点及一直线的距离之比为常数e(e1,即为双曲线的离心率;定点不在定直线上)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。

【例2】设双曲线x2-y2/3=1的左右焦点为F1,F2.点P(6,6)为双曲线内部的一点,点M是双曲线右支上的一点,求|MP|+|MF2|/2的最小值.

【分析】设过M作准线的垂线MN,垂足为N,欲求|MP|+|MF2|/2的最小值,即求|MP|+|MN|的最小值.

【解答】解∵双曲线方程为x2-y2/3=1,

∴a=1,b=√3,c=2,

可得离心率e=2,

设过M作准线的垂线MN,垂足为N,则|MF2|/|MN|=2,

∴|MN|=|MF2|/2,

∴|MP|+|MF2|/2=|MP|+|MN|,

当且仅当M,N,P三点共线时|MP|+|MF2|/2的值最小,这个最小值为6-1/2=11/2.

【点评】求|MP|+|MF2|/2的最小值,通过圆锥曲线的统一定义将|MF2|/2转化为|MN|,点到直线垂线段最短.

双曲线第三定义(参数方程):双曲线方程:x2/a2-y2/b2=1,可以看成:(x/a)2-(y/b)2=1。而且:sec2α-tan2α=1,所以x=asecα,y=btanα.

在以a、b为半径的圆上分别画出角α对应的asecα与btanα值对应的线段,以(asecα,btanα)为坐标点形成的轨迹即为双曲线。

以下视频来源于

解题的艺术

【说明】双曲线的参数方程不是高考范围内的内容,对比椭圆的参数作为了解。

双曲线第四定义(斜率积):双曲线的两个顶点与双曲线上任意一点形成两条直线,两条斜率积为b2/a2。

【例3】已知双曲线C关于两条坐标轴都对称,且过点P(2,1),直线PA1与PA2(A1,A2为双曲线C的两个顶点)的斜率之积KPA1.KPA2=1,求双曲线C的标准方程.

【分析】分类讨论,设出标准方程,确定双曲线的顶点坐标,利用斜率关系及点P的坐标,即可得到结论.

【解答】

【点评】知道斜率积结论,清晰知道解题思路,把斜率积转化成与a、b相关方程得解.

双曲线定义

定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。

a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。

双曲线的取值范围:

│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。

双曲线的对称性:

关于坐标轴和原点对称,其中关于原点成中心对称。

双曲线的顶点:

A(-a,0),A'(a,0)。同时AA'叫做双曲线的实轴且│AA'│=2a。

B(0,-b),B'(0,b)。同时BB'叫做双曲线的虚轴且│BB'│=2b。

F1(-c,0)或(0,-c),F2(c,0)或(0,c)。F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c。

对实轴、虚轴、焦点有:a2+b2=c2。

双曲线的定义

双曲线。

(1)定义①平面内到两个定点F1,F2的距离之差的绝对值等于定值2a(02a|F1F2|)的点的轨迹。

②到定点煌距离和定直线的距离之比为e(e>1).

(2)几何性质:

焦点:

顶点:

对称轴:x轴,y轴

离心率: e越大,开口越阔。

准线:

渐近线:

焦半径:双曲线上任意一点M与双曲线焦点 的连线段,叫做双曲线的焦半径。

焦点在x轴上的双曲线的焦半径公式:

焦点在y轴上的双曲线的焦半径公式:

(其中 分别是双曲线的下上焦点)

(“左加右减,下加上减”,和抛物线记诀相反,和椭圆记诀同,但多了绝对值)

焦点弦: 过焦点的直线割双曲线所成的相交弦 。

通径:过焦点且垂直于对称轴的相交弦.直接应用焦点弦公式得 .

(3)当a=b时�6�2离心率e= �6�2两渐近线互相垂直,分别为 ,此时双曲线为等轴双曲线,可设为 。 >0时,焦点在x轴, <0时,焦点在y轴。

(4)共轭双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线.

特征:①共同一对渐近线;

②原双曲线和其共轭双曲线的焦点在同一个圆上;

③求共轭双曲线方法:将1改为—1。

(5)共渐近线系的双曲线: ( ≠0, 每一个实数值对应着一条双曲线)

(6)双曲线的方程与渐近线方程的关系

①若双曲线方程为 渐近线方程: .

②若渐近线方程为 双曲线可设为 .

③若双曲线与 有公共渐近线,可设为 ( ,焦点在x轴上, ,焦点在y轴上).

温馨提示:内容均由网友自行发布提供,仅用于学习交流,如有版权问题,请联系我们。