本篇文章给大家谈谈内切圆半径,以及内切圆半径等于什么对应的知识点,希望对各位有所帮助。本文目录一览:
1、内切圆半径公式
2、三角形内切圆半径公式推导是什么?
3、内切圆
本篇文章给大家谈谈内切圆半径,以及内切圆半径等于什么对应的知识点,希望对各位有所帮助。
本文目录一览: 1、内切圆半径公式 2、三角形内切圆半径公式推导是什么? 3、内切圆的半径怎么求公式 4、内切圆半径公式是什么? 内切圆半径公式直角三角形:内切圆半径为r=(a+b-c)/2 (a,b为直角边,c为斜边)一般三角形:内切圆半径为r=2S/(a+b+c)。
在数学中,若一个二维平面上的多边形的每条边都能与其内部的一个圆形相切,该圆就是多边形的内切圆,这时称这个多边形为圆外切多边形。它亦是多边形内部最大的圆形。内切圆的圆心被称为该多边形的内心。
一个多边形至多有一个内切圆,也就是说对于一个多边形,它的内切圆,如果存在的话,是唯一的。并非所有的多边形都有内切圆。三角形和正多边形一定有内切圆。拥有内切圆的四边形被称为圆外切四边形。
扩展资料
性质:
(1)在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
(2)正多边形必然有内切圆,而且其内切圆的圆心和外接圆的圆心重合,都在正多边形的中心。
(3)常见辅助线:过圆心作垂直。
参考资料来源:百度百科-内切圆
三角形内切圆半径公式推导是什么?
三角形内切圆半径公式:r=2S/(a+b+c)。
推导:设内切圆半径为r,圆心O,连接OA、OB、OC,得到三个三角形OAB、OBC、OAC。
那么,这三个三角形的边AB、BC、AC上的高均为内切圆半径r。
所以:S=S△ABC=S△OAB+S△OBC+S△OAC
=(1/2)AB*r+(1/2)BC*r+(1/2)*AC*r
=(1/2)(AB+BC+AC)*r
=(1/2)(a+b+c)*r
所以,r=2S/(a+b+c)。
扇形内切圆
与扇形⌒AOB的圆弧⌒AB及两条半径OA,OB都相切的圆叫扇形的内切圆。
内切圆圆心O′在扇形的圆心角AOB的角平分线上OO′=R-r(R是扇形半径,r是内切圆半径)。
过O′作O′A⊥OA,垂足A,直角三角形OAO′中,∠O′OA=30°,O′A=r,OO′=R-r。
∴r=(R-r)*sin30°,r=1/2(R-r),R=3r。
内切圆面积=πr^2。
内切圆的半径怎么求公式求内切圆的半径公式:r=2S/C。与多边形各边都相切的圆叫做多边形的内切圆。特殊地,与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形三条角平分线的交点。
在古典几何中,圆或圆的半径是从其中心到其周边的任何线段,并且在更现代的使用中,它也是其中任何一个的长度。这个名字来自拉丁半径,意思是射线,也是一个战车的轮辐。半径的复数可以是半径(拉丁文复数)或常规英文复数半径。半径的典型缩写和数学变量名称为r。通过延伸,直径d定义为半径的两倍:d=2r。
内切圆半径公式是什么?内切圆半径公式为r=(a+b-c)/2(a,b为直角边,c为斜边)。
一般三角形:内切圆半径为r=2S/(a+b+c),S是三角形的面积公式。首先画一个三角形以及三角形的内接圆,分别连接圆心和三角形三个顶点(这时可见三角形分为了三个三角形),再分别连接圆心和三个切点(这时可见三角形分为六个个小三角形)。
可得这三条线段分别与三角形三条边a、b、c垂直,这时三角形面积可以用三个小三角形来求,既a*r/2+b*r/2+c*r/2=(a+b+c)*r/2=S,所以r=2S/(a+b+c)。
相关信息
在数学中,若一个二维平面上的多边形的每条边都能与其内部的一个圆形相切,该圆就是多边形的内切圆,这时称这个多边形为圆外切多边形。它亦是多边形内部最大的圆形。内切圆的圆心被称为该多边形的内心。
一个多边形至多有一个内切圆,也就是说对于一个多边形,它的内切圆,如果存在的话,是唯一的。并非所有的多边形都有内切圆。三角形和正多边形一定有内切圆。拥有内切圆的四边形被称为圆外切四边形。