本篇文章给大家谈谈等比数列的和,以及对应的知识点,希望对各位有所帮助。本文目录一览:
1、等比数列如何求和?
2、等比数列求和的方法
3、等比数列是什么?如何求和
4、等
本篇文章给大家谈谈等比数列的和,以及对应的知识点,希望对各位有所帮助。
本文目录一览: 1、等比数列如何求和? 2、等比数列求和的方法 3、等比数列是什么?如何求和 4、等比数列求和 5、怎么求等比数列的和? 等比数列如何求和?公式
等比数列求和公式为:Sn=n*a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)(q不等于1)
特殊性质
①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每k项之和仍成等比数列;
③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;
④若G是a、b的等比中项,则G^2=ab(G≠0);
⑤在等比数列中,首项a1与公比q都不为零.
注意:上述公式中an表示等比数列的第n项。
扩展资料:
等比数列求和公式推导
由等比数列定义
a2=a1*q
a3=a2*q
a(n-1)=a(n-2)*q
an=a(n-1)*q 共n-1个等式两边分别相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]*q
即Sn-a1=(Sn-an)*q,即(1-q)Sn=a1-an*q
当q≠1时,Sn=(a1-an*q)/(1-q)(n≥2)
当n=1时也成立.
当q=1时Sn=n*a1
所以Sn=n*a1(q=1);(a1-an*q)/(1-q)(q≠1)。
错位相减法
Sn=a1+a2+a3+...+an
Sn*q=a1*q+a2*q+...+a(n-1)*q+an*q=a2+a3+...+an+an*q
以上两式相减得(1-q)*Sn=a1-an*q
数学归纳法
证明:
(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;
(2)假设当n=k(k≥1,k∈N*)时,等式成立,即ak=a1qk-1;
当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;
这就是说,当n=k+1时,等式也成立;
由(1)(2)可以判断,等式对一切n∈N*都成立。
等比数列求和的方法
等比数列求和公式:Sn=a1(1-q^n)/(1-q)。
其中常数q叫作公比,在等比数列中,首项a1与公比q都不为零。等比数列求和公式是求等比数列之和的公式。
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公式可以快速的计算出出该数列的和。
一个数列,如果任意的后一项与前一项的比值是同一个常数(这个常数通常用q来表示)且数列中任何项都不能为0。
等比数列是什么?如何求和1、等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。
举例:
数列:2、4、8、16、······
每一项与前一项的比值:4÷2=8÷4=16÷8=2,所以这个数列是等比数列,而它的公比就是2。
2、等比数列的求和公示如下:
其中a1为首项,q为等比数列公比,Sn为等比数列前n项和。
还是以数列:2、4、8、16、······为例,a1=2,公比q=2,
假如是求前四项的和,即:Sn=2×(1-2^4)÷(1-2)=30,与2+4+8+16=30 相符。
扩展资料
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金×(1+利率)^存期
等比数列求和等比数列求和公式:Sn=a1(1-q^n)/(1-q)。
其中常数q叫作公比,在等比数列中,首项a1与公比q都不为零。等比数列求和公式是求等比数列之和的公式。
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公式可以快速的计算出出该数列的和。
一个数列,如果任意的后一项与前一项的比值是同一个常数(这个常数通常用q来表示)且数列中任何项都不能为0。
怎么求等比数列的和?等比数列求和公式是求等比数列之和的公式。
等比级数若收敛,则其公比q的绝对值必小于1。
故当n趋向于无穷时,等比数列求和公式中q的n次方趋于0(|q|1),此时Sn=a1/(1-q)。
q大于1时等比级数发散。
等比数列(又名几何数列):是一种特殊数列。它的特点是:从第2项起,每一项与前一项的比都是一个常数。
根据历史传说记载,国际象棋起源于古印度,见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宰相见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情。