整数的意义 分数乘整数的意义

今天给各位分享整数的意义的知识,其中也会对分数乘整数的意义进行解释。本文目录一览:
1、整数的意义是什么??


2、整数的意义是什么


3、整数的意义


4、整数的定义是什么?

本文最后更新时间:  2023-02-25 05:21:17

今天给各位分享整数的意义的知识,其中也会对分数乘整数的意义进行解释。

本文目录一览: 1、整数的意义是什么?? 2、整数的意义是什么 3、整数的意义 4、整数的定义是什么? 整数的意义是什么??

整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。正整数、零与负整数构成整数系。

一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+).

整数的意义是什么

整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、…

(n为整数)为负整数。正整数、零与负整数构成整数系。

一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+).

整数的意义

意义:

我们在数物体的时候,用来表示物体个数的数1、2、3、4、5、……,叫做自然数,也叫做正整数。自然数的个数是无限的。

在自然数的前面加上“-”号,得到的数-1,-2,-3,-4,-5,……叫做负整数。负整数的个数也是无限的。

0既不是负整数也不是正整数。它可以用来表示一个物体也没有。

我们把正整数,0,负整数,统称为整数。

整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。

如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。

我们以0为界限,将整数分为三大类:

1. 正整数,即大于0的整数如,1,2,3······直到  。

2. 零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。

3. 负整数,即小于0的整数如,-1,-2,-3······直到  。(n为正整数)

注:零和正整数统称自然数。

整数也可分为奇数和偶数两类。

扩展资料:

整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n 为整数);奇数则可表示为2n+1(或2n-1)。

偶数包括正偶数(亦称双数)、负偶数和0。所有整数不是奇数,就是偶数。

在十进制里,我们可用看个位数的方式判断该数是奇数还是偶数:个位为1,3,5,7,9的数为奇数;个位为0,2,4,6,8的数为偶数。

利用皮亚诺公理可以对正整数及N*进行如下描述:

任何一个满足下列条件的非空集合叫做正整数集合,记作N*。如果

Ⅰ 1是正整数;

Ⅱ 每一个确定的正整数a,都有一个确定的后继数a' ,a'也是正整数(数a的后继数a‘就是紧接在这个数后面的整数(a+1)。例如,1‘=2,2’=3等等。);

Ⅲ 如果b、c都是正整数a的后继数,那么b = c;

Ⅳ 1不是任何正整数的后继数;

Ⅴ 设S⊆N*,且满足2个条件(i)1∈S;(ii)如果n∈S,那么n'∈S。那么S是全体正整数的集合,即S=N*。(这条公理也叫归纳公理,保证了数学归纳法的正确性)

皮亚诺公理对N*进行了刻画和约定,由它们可以推出关于正整数的各种性质。

参考资料:百度百科---整数

整数的定义是什么?

正整数、负整数和0统称为整数。整数的个数是无限的,没有最小的整数和最大的整数。

一、整数的分类和意义

1.自然数的含义:自然数源于数数,在数物体的时候,用来表示物体个数的1,2,3,…99,100…都叫做自然数。一个物体也没有,用0表示(0也是自然数)。

最小的自然数是0,最小的一位数是1,自然数的单位是1。

2.自然数(0除外)的两方面意义

(1)用来表示事物多少的叫基数。例:"7本书"中的"7"是基数;

(2)用来表示事物次序(顺序)的叫序数。例:"第9天"中的"9"是序数。

3.0的意义(0的作用)

(1)在计数时0起占位作用,表示该位上没有单位;

(2)表示起点,如零刻度;

(3)计数,如果一个物体也没有,用0表示;

(4)表示界线,如温度计,数轴上的0,表示正、负数的分界线;

(5)0是一个完全有确定意义的数;

(6)0不能作除法的除数、分数的分母、比的后项;

(7)0是最小的自然数,是一个偶数;是任何自然数(0除外)的倍数。

4.整数的含义

像-5,-2,0,2,5,10,……这样的数统称整数。整数的个数是无限的,没有最小的整数,也没有最大的整数。

(1)正整数:大于0的自然数或整数。

(2)负整数:像-1,-2,-3,……这样的数叫做负整数。它是与正整数表示相反意义的量。(小于0的整数。)

(3)0既不是正数也不是负数,它是最小的自然数。1是最小的一位数。

5.整数的分类

6.正数和负数

(1)正数的含义

像以前学过的+1、+200、+、+4.8、+24%,……这样的数叫做正数。正数前面的"+"号,称为正号,也可以省去不写。

(2)负数的含义

小于0的数叫做负数。像-5、-7.8、-、-500、-35%,……这样的数都是负数。

7.负数在日常生活中的应用

正、负数是表示两种具有相反意义的量。如:收入与支出、海平面以上与海平面以下、零下与零上、盈利与盈亏、左与右、东与西、余钱与亏钱、进与出、增产与减产、得分与扣分、上升与下降等。

二、整数的读写

1.数位顺序表

(1)数级:从个位起每四位是一级,依次是个级、万级、亿级……。

个级表示多少个一,计数单位"一";万级表示多少个万,计数单位"万";亿级表示多少个亿,计数单位"亿"。

(2)位数:一个数含有数位的个数叫做位数。因此,在一个数中所含数字的个数是几,这个数就叫做几位数。

(3)数位:各个计数单位所占的位置,叫做数位。数位是按固定顺序排列的。

(4)计数单位:整数和小数都是按照十进制计数法写出的数,其中个、十、百……以及十分之一、百分之一……都是计数单位。它表示各个数位上的一个1表示的是多少。

2.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,按照个级的读法去读,只要在后面加一个"亿"或"万"字就可以了。每一级末尾的0都不读出来,级首或级中有一个或连续几个0,都只读一个零。

读数和写数时,如果数的后面有单位名称,则单位名称不能丢掉。

3.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

4.整数的大小比较

(1)比较两个数的大小,如果位数不同,那么位数多的那个数就大。

(2)如果位数相同,先看最高位,最高位上的数大那个数就大;最高位上的数相同,次高位上的数大那个数就大,如果还相同,则继续依次比较,直到比较出大小为止。

5.整数的改写和近似数

一个较大的多位数,为了读写方便,常常把它改写成用"万"或"亿"作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

(1)整数的改写

准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数,根据需要还可以还原。例如把1254300000改写成以万作单位的数是125430万;改写成以亿作单位的数是12.543亿。

(2)近似数

用一个与它比较接近的数来表示事物的数量,这样的数就是近似数。(根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。)例如:1302490015省略亿后面的尾数是13亿。

近似数常用词:精确到哪位小数、保留几位小数等。

a.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。

b.进一法:在取近似数时,不管多余部分上的数量是多少,都向前进1。这种求近似数的方法,叫做进一法。

c.去尾法:在取近似数时,不管多余部分上的数量是多少,一概去掉。这种求近似数的方法,叫做去尾法。

温馨提示:内容均由网友自行发布提供,仅用于学习交流,如有版权问题,请联系我们。