今天给各位分享函数周期性的知识,其中也会对函数周期性公式大总结进行解释。本文目录一览:
1、函数的周期性
2、函数的周期性是什么?
3、函数的周期性是什么?
4、函数周
今天给各位分享函数周期性的知识,其中也会对函数周期性公式大总结进行解释。
本文目录一览: 1、函数的周期性 2、函数的周期性是什么? 3、函数的周期性是什么? 4、函数周期性 5、数学 函数周期性 6、函数周期是指什么? 函数的周期性函数的周期性定义:若T为非零常数,对于定义域内的任一x,使f(x)=f(x+T)
恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
函数周期性的关键的几个字“有规律地重复出现”。当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现
假如函数f(x)=f(x
T)(或f(x
a)=f(x-b)其中a
b=T),则说T是函数的一个周期.T的整数倍也是函数的一个周期.
函数的周期性是什么?
函数的周期性定义:若存在一非零常数T,对于定义域内的任意x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
函数周期性的关键的几个字“有规律地重复出现”。
当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现。
假如函数f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T是函数的一个周期.T的整数倍也是函数的一个周期。
(1)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|。
(2)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|。
(3)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a。
(4)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a。
根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。
函数的周期性是什么?函数的周期性定义:若存在一非零常数T,对于定义域内的任意x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。
1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
函数的由来:
中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。
中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”
所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。
函数周期性1.函数周期性的关键的几个字“有规律地重复出现”。
概念的提出:
将日历中“星期”随日期变化的周期性的出现和正弦函数值随角的变化周期性的出现进行对比,寻求出两者实质:当“自变量”增大某一个值时,“函数值”有规律的重复出现。
出示函数周期性的定义:对于函数y=f(x),如果存在一个不为零的常数t,使得当x取定义域内的每一个值时,f(x+t)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数t叫做这个函数的周期。
“当自变量增大某一个值时,函数值有规律的重复出现”这句话用数学语言的表达.
2.定义:对于函数y=f(x),如果存在一个不为零的常数t,使得当x取定义域内的每一个值时,f(x+t)=f(x)
概念的具体化:
当定义中的f(x)=sinx或cosx时,思考t的取值。
t=2kπ(k∈z且k≠0)
所以正弦函数和余弦函数均为周期函数,且周期为t=2kπ(k∈z且k≠0)
展示正、余弦函数的图象。
周期函数的图象的形状随x的变化周期性的变化。(用课件加以说明。)
强调定义中的“当x取定义域内的每一个值”
令(x+t)2=x2,则x2+2xt+t2=x2
所以2xt+t2=0,即t(2x+t)=0
所以t=0或t=-2x
强调定义中的“非零”和“常数”。
例:三角函数sin(x+t)=sinx
cos(x+t)=cosx中的t取2π
3.最小正周期的概念:
对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。
对于正弦函数y=sinx,自变量x只要并且至少增加到x+2π时,函数值才能重复取得。所以正弦函数和余弦函数的最小正周期是2π。(说明:如果以后无特殊说明,周期指的就是最小正周期。)
在函数图象上,最小正周期是函数图象重复出现需要的最短距离。
4.例:求下列函数的周期:
(1)y=3cosx
分析:只要cosx中的自变量只要且至少增加到x+2π时,函数cosx的值才重复出现,因而函数3cosx的值也才重复出现,因此y=3cosx的周期是2π.(说明cosx前面的系数和周期无关。)
(2)y=sin(x+π/4)
分析略,说明在x后面的角也不影响周期。
(3)y=sin2x
分析:因为sin2(x+π)=sin(2x+2π)=sin2x,所以自变量x只要且至少增加到x+π时,函数值就重复出现。所以原函数的周期为π。(说明x的系数对函数的周期有影响。)
(4)y=cos(x/2+π/4)(分析略)
(5)y=sin(ωx+φ)(分析略)
结论:形如y=asin(ωx+φ)或y=acos(ωx+φ)(a,ω,φ为常数,a0,xr)的函数的周期为t=(2π-φ)/ω
数学 函数周期性函数的周期性定义:若t为非零常数,对于定义域内的任一x,使
恒成立,则f(x)叫做周期函数,t叫做这个函数的一个周期。
函数周期性的关键的几个字“有规律地重复出现”。
当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现
假如函数f(x)=f(x+t)(或f(x+a)=f(x-b)其中a+b=t),则说t是函数的一个周期.t的整数倍也是函数的一个周期.
函数周期是指什么?函数的周期性定义:若存在一非零常数T,对于定义域内的任意x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
1、y=sinx/cosx=tanx,T=Pi 。
2、周期函数的积;商:y=y1y2,y=y1/y2的周期的情况比较复杂,只能够化成一个角的一个函数以后在来求周期。例如 :
y=sinxcosx=1/2*sin2x,T=Pi 。
y=(sinx)^2+(cosx)^2,T∈R。
y=sin3x/sinx=3-4(sinx)^2=2+cos2x,T=Pi。
它的周期似乎与T(sin3x)=2P1/3和T(sinx)=2Pi的关系不大,此外二无理数之间不存在公倍数。
函数周期性
函数周期性的关键的几个字“有规律地重复出现”。
当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现。
假如函数f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T是函数的一个周期.T的整数倍也是函数的一个周期。