双曲线的几何性质 双曲线的几何性质课件

今天给各位分享双曲线的几何性质的知识,其中也会对双曲线的几何性质课件进行解释。本文目录一览:
1、双曲线的性质


2、双曲线几何性质


3、双曲线知识点有哪些?


4、双曲线

本文最后更新时间:  2023-02-25 10:33:23

今天给各位分享双曲线的几何性质的知识,其中也会对双曲线的几何性质课件进行解释。

本文目录一览: 1、双曲线的性质 2、双曲线几何性质 3、双曲线知识点有哪些? 4、双曲线有哪些性质? 5、双曲线的几何性质有哪些 双曲线的性质

双曲线的性质:

1、取值区域:x≥a,x≤-a或者y≥a,y≤-a;

2、对称性:关于坐标轴和原点对称。

3、顶点:A(-a,0)A’(a,0)AA’叫做双曲线的实轴,长2a;B(0,-b)B’(0,b)BB’叫做双曲线的虚轴,长2b等。

扩展资料:

实际应用

双曲线在实际中的应用有通风塔,冷却塔,埃菲尔铁塔,广州塔等。

几何性质

由于双曲线在高考的小题中经常出现,并且经常结合渐近线出题,这里列举几个常见的双曲线几何性质,尤其是关于渐近线的性质,便于小题中能快速使用这些性质来解题。

双曲线几何性质

双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹。

双曲线有两个分支。

在定义1中提到的两给定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。

在定义2中提到的给定直线称为该双曲线的准线。

在定义2中提到的到给定点与给定直线的距离之比,称为该双曲线的离心率。

双曲线有两个焦点,两条准线。(注意:尽管定义2中只提到了一个焦点和一条准线。但是给定同侧的一个焦点,一条准线以及离心率可以根据定义2同时得到双曲线的两支,而两侧的焦点,准线和相同离心率得到的双曲线是相同的。)

双曲线与两焦点连线的交点,称为双曲线的顶点。

双曲线有两条渐近线。

双曲线知识点有哪些?

1、双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。双曲线的几何性质分为两大类。位置关系:中心是两焦点,两顶点的中点:焦点在实轴上;实轴与虚轴垂直;双曲线有两条过中心的渐近线;准线与实轴垂直等等。

2、双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。

3、双曲线的几何性质分为两大类。

位置关系:中心是两焦点,两顶点的中点:焦点在实轴上;实轴与虚轴垂直;双曲线有两条过中心的渐近线;准线与实轴垂直。

数量关系:实轴长、虚轴长、焦距分别为2a,2b,2c。两准线之间距离为﹔焦准距(焦参数)。

离心率,e1,e越大,双曲线开口越阔。

4、双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线{\displaystylef(x)=1/x}f(x)=1/x的情况下,渐近线是两个坐标轴。

5、双曲线共享许多椭圆的分析属性,如偏心度,焦点和方向图。许多其他数学物体的起源于双曲线,例如双曲抛物面(鞍形表面),双曲面(“垃圾桶”),双曲线几何(Lobachevsky的着名的非欧几里德几何),双曲线函数(sinh,cosh,tanh等)和陀螺仪矢量空间(提出用于相对论和量子力学的几何,不是欧几里得)。

双曲线有哪些性质?

1、取值区域:

x≥a,x≤-a或者y≥a,y≤-a

2、对称性:

关于坐标轴和原点对称。

3、顶点:

A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b。

4、渐近线:

横轴:y=±(b/a)x  竖轴:y=±(a/b)x

5、离心率:

e=c/a 取值范围:(1,+∞)

6、双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率。

7、双曲线焦半径公式:

圆锥曲线上任意一点到焦点距离。过右焦点的半径r=|ex-a|;过左焦点的半径r=|ex+a|

8、等轴双曲线

双曲线的实轴与虚轴长相等,2a=2b e=√2

9、共轭双曲线

(x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线

(1)共渐近线

(2)e1+e2=2√2

10、准线:

x=±a^2/c,或者y=±a^2/c

11、通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):

2b^2/a

12、焦点弦长公式:

2pe/(1-e^2cos^2θ) [p为焦点到准线距离,θ为弦与X轴夹角] 或2p/sin^2θ

13、d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下:

由直线的斜率公式:k = (y1 - y2) / (x1 - x2)  得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k

分别代入两点间的距离公式:|AB| = √[(x1 - x2)² + (y1 - y2)² ]

稍加整理即得:  |AB| = |x1 - x2|√(1 + k²) 或 |AB| = |y1 - y2|√(1 + 1/k²)

扩展资料:

一、光学性质:

从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上。双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用。

二、相关定义:

定义1:

平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点。

定义2:

平面内,到给定一点及一直线的距离之比为常数e((e1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为(焦点在x轴上)或(焦点在y轴上)。

定义3:

一平面截一圆锥面,当截面与圆锥面的母线不平行也不通过圆锥面顶点,且与圆锥面的两个圆锥都相交时,交线称为双曲线。

定义4:

在平面直角坐标系中,二元二次方程F(x,y)=ax2+bxy+cy2+dx+ey+f=0满足以下条件时,其图像为双曲线。

参考资料:

百度百科-双曲线

双曲线的几何性质有哪些

双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹.

双曲线有两个分支.

在定义1中提到的两给定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点.双曲线有两个焦点.

在定义2中提到的给定直线称为该双曲线的准线.

在定义2中提到的到给定点与给定直线的距离之比,称为该双曲线的离心率.

双曲线有两个焦点,两条准线.(注意:尽管定义2中只提到了一个焦点和一条准线.但是给定同侧的一个焦点,一条准线以及离心率可以根据定义2同时得到双曲线的两支,而两侧的焦点,准线和相同离心率得到的双曲线是相同的.)

双曲线与两焦点连线的交点,称为双曲线的顶点.

双曲线有两条渐近线.

温馨提示:内容均由网友自行发布提供,仅用于学习交流,如有版权问题,请联系我们。