本篇文章给大家谈谈基本初等函数,以及基本初等函数在其定义域内都是连续的对应的知识点,希望对各位有所帮助。本文目录一览:
1、基本初等函数包括那5种?
2、什么是基本初等函
本篇文章给大家谈谈基本初等函数,以及基本初等函数在其定义域内都是连续的对应的知识点,希望对各位有所帮助。
本文目录一览: 1、基本初等函数包括那5种? 2、什么是基本初等函数 3、基本初等函数有哪些? 基本初等函数包括那5种?基本初等函数包括以下几种:
(1)常数函数y = c( c 为常数)
(2)幂函数y = x^a( a 为常数)
(3)指数函数y = a^x(a0, a≠1)
(4)对数函数y =log(a) x(a0, a≠1,真数x0)
(5)三角函数以及反三角函数(如正弦函数 :y =sinx 反正弦函数:y = arcsin x等)
扩展资料
幂函数定义:一般地,形如y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。一般形式如下 :( α为常数,且可以是自然数、有理数,也可以是任意实数或复数。)
指数函数定义:指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。一般形式如下 :(a0, a≠1)
对数函数定义:一般地,函数y=logax(a0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函 数里对于a的规定,同样适用于对数函数。一般形式如下 :(a0, a≠1, x0,特别当α=e时,记为y=ln x)
常见三角函数主要有以下 6 种:
正弦函数 :y =sinx
余弦函数 :y =cos x
正切函数 :y =tan x
余切函数 :y =cot x
正割函数 :y =sec x
余割函数 :y =csc x
此外,还有正矢、余矢等罕用的三角函数 。
反三角函数主要有以下6种:
反正弦函数:y = arcsin x
反余弦函数:y = arccos x
反正切函数:y = arctan x
反余切函数:y = arccot x
反正割函数:y = arcsec x
反余割函数:y = arccsc x
什么是基本初等函数基本初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数。初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。基本初等函数和初等函数在其定义区间内均为连续函数。如f(x)=x^6,f(x)=sinx都是基本初等函数,而f(x)=x^6-sin(x+1)就是一般初等函数。
不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。目前有两种分类方法:数学分析有六种基本初等函数,高等数学只有五种。
高等数学将基本初等函数归为五类:幂函数、指数函数、对数函数、三角函数、反三角函数。
数学分析将基本初等函数归为六类:幂函数、指数函数、对数函数、三角函数、反三角函数、常数函数。
基本初等函数有哪些?
初等函数有常函数、幂函数、指数函数、对数函数、三角函数、反三角函数。初等函数的基本定义是基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的函数,称为初等函数。
初等函数概念
初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数、与常数经过有限次的有理运算,加、减、乘、除、有理数次乘方、有理数次开方及有限次函数复合所产生,并且能用一个解析式表示的函数。即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的函数,称为初等函数。
一个初等函数,除了可以用初等解析式表示以外,往往还有其他表示形式。初等函数是最先被研究的一类函数,它与人类的生产和生活密切相关,并且应用广泛。为了方便,人们编制了各种函数表,如平方表、开方表、对数表、三角函数表等。