今天给各位分享直线方程公式的知识,其中也会对直线方程公式进行解释。本文目录一览:
1、直线方程公式
2、直线方程的几种表达方式?
3、直线方程
4、直线方程的公式
直线
今天给各位分享直线方程公式的知识,其中也会对直线方程公式进行解释。
本文目录一览: 1、直线方程公式 2、直线方程的几种表达方式? 3、直线方程 4、直线方程的公式 直线方程公式一、直线方程的五种形式
直线方程一般式:Ax+By+C=0(A、B不同时为0);
2.点斜式:y-y0=k(x-x0);
3.截距式:x/a+y/b=1;
4.斜截式:y=kx+b;
5.两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)。
二、 求直线方程的一般方法:
1.直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程.应明确直线方程的几种形式及各自的特点,合理选择解决方法,一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知在两坐标轴上的截距用截距式;已知两点用两点式,这时应特别注意斜率不存在的情况.
2.待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标等.
3.利用待定系数法求直线方程的步骤:①设方程;②求系数;③代入方程得直线方程,如果已知直线过一个定点 ,可以利用直线的点斜式 求方程,也可以利用斜截式、截距式等形式求解。
直线方程的几种表达方式?1、一般式:Ax+By+C=0(A、B不同时为0)【适用于所有直线】
2、点斜式:y-y0=k(x-x0) 【适用于不垂直于x轴的直线】
表示斜率为k,且过(x0,y0)的直线
3、截距式:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线
4、斜截式:y=kx+b【适用于不垂直于x轴的直线】
表示斜率为k且y轴截距为b的直线
5、两点式:【适用于不垂直于x轴、y轴的直线】
表示过(x1,y1)和(x2,y2)的直线
6、交点式:f1(x,y) *m+f2(x,y)=0 【适用于任何直线】
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线
7、点平式:f(x,y) -f(x0,y0)=0【适用于任何直线】
表示过点(x0,y0)且与直线f(x,y)=0平行的直线
8、法线式:x·cosα+ysinα-p=0【适用于不平行于坐标轴的直线】
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度
9、点向式:(x-x0)/u=(y-y0)/v (u≠0,v≠0)【适用于任何直线】
表示过点(x0,y0)且方向向量为(u,v )的直线
10、法向式:a(x-x0)+b(y-y0)=0【适用于任何直线】
表示过点(x0,y0)且与向量(a,b)垂直的直线。
扩展资料:
一、位置关系
若直线L1:A1x+B1y+C1 =0与直线 L2:A2x+B2y+C2=0
1、当A1B2-A2B1≠0时, 相交
2、A1/A2=B1/B2≠C1/C2, 平行
3、A1/A2=B1/B2=C1/C2, 重合
4、A1A2+B1B2=0, 垂直
二、局限性
各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线。
(2)两点式不能表示与坐标轴平行的直线。
(3)截距式不能表示与坐标轴平行或过原点的直线。
(4)直线方程的一般式中系数A、B不能同时为零。
参考资料来源:百度百科-直线方程
直线方程直线方程公式:一般式Ax+By+C=0(AB≠0),斜截式y=kx+b(k是斜率b是x轴截距),点斜式y-y1=k(x-x1)(直线过定点(x1,y1))。一般式Ax+By+C=0(AB≠0),斜截式y=kx+b,点斜式y-y1=k(x-x1)(直线过定点(x1,y1))两点式(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),(x2,y2))截距式x/a+y/b=1(a是x轴截距,b是y轴截距)。
直线方程的斜率公式
直线斜率公式,k=(y2-y1)/(x2-x1),如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。斜率,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
直线方程的公式基本公式是y=kx+b,然后带入两个点的坐标,就可以解出k,b得到直线方程