三角函数公式大全 三角函数公式大全表格

本篇文章给大家谈谈三角函数公式大全,以及三角函数公式大全表格对应的知识点,希望对各位有所帮助。本文目录一览:
1、三角函数公式大全


2、三角函数的所有公式是什么?


3、三

本文最后更新时间:  2023-03-04 23:41:18

本篇文章给大家谈谈三角函数公式大全,以及三角函数公式大全表格对应的知识点,希望对各位有所帮助。

本文目录一览: 1、三角函数公式大全 2、三角函数的所有公式是什么? 3、三角函数所有公式大全 4、三角函数的公式大全 5、三角函数的公式有哪些? 6、三角函数计算公式大全 三角函数公式大全

1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

3、公式三:任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

6、公式六:π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

三角函数的所有公式是什么?

三角函数公式:

sin(α+β)=sinαcosβ+cosαsinβ。

sin(α-β)=sinαcosβ-cosαsinβ。

cos(α+β)=cosαcosβ-sinαsinβ。

cos(α-β)=cosαcosβ+sinαsinβ。

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)。

tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)。

六种基本函数:

函数名:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

正弦函数:sinθ=y/r

余弦函数:cosθ=x/r

正切函数:tanθ=y/x

余切函数:cotθ=x/y

正割函数:secθ=r/x

余割函数:cscθ=r/y

三角函数所有公式大全

三角函数所有公式大全:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

记忆三角函数公式

1、“奇变偶不变,符号看象限”:

“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

2、符号判断口诀:

“一全正;二正弦;三正切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。

“ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。

三角函数的公式大全

三角函数是数学考试中一个很重要的知识点,学好三角函数要牢记公式,下面整理了三角函数的公式,希望能帮助到大家。

倍角公式

1、二倍角公式

正弦形式:sin2α=2sinαcosα

正切形式:tan2α=2tanα/(1-tan^2(α))

余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2、三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

3、四倍角公式

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

半角公式

1、正弦

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

2、余弦

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

3、正切

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

积化和差

sina*cosb=[sin(a+b)+sin(a-b)]/2

cosa*sinb=[sin(a+b)-sin(a-b)]/2

cosa*cosb=[cos(a+b)+cos(a-b)]/2

sina*sinb=[cos(a-b)-cos(a+b)]/2

和差化积

sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

诱导公式

1、任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

3、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

4、设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

6、π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

三角函数的公式有哪些?

一、sin度数公式

1、sin 30= 1/2

2、sin 45=根号2/2

3、sin 60= 根号3/2

二、cos度数公式

1、cos 30=根号3/2

2、cos 45=根号2/2

3、cos 60=1/2

三、tan度数公式

1、tan 30=根号3/3

2、tan 45=1

3、tan 60=根号3

扩展资料:

1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。

2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。

5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。

6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。

参考资料:三角函数公式百度百科

三角函数计算公式大全

三角函数的公式有很多,掌握三角函数的内部规律及本质也是学好三角函数的关键所在。接下来给大家分享三角函数计算公式,供参考!

三角函数两角和与差计算公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cossinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

三角函数积化和差计算公式

sinAsinB=-[cos(A+B)-cos(A-B)]/2

cosAcosB=[cos(A+B)+cos(A-B)]/2

sinAcosB=[sin(A+B)+sin(A-B)]/2

cosAsinB=[sin(A+B)-sin(A-B)]/2

三角函数和差化积计算公式

sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]

sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]

cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]

cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

三角函数万能公式

sin(a)=[2tan(a/2)]/[1+tan 2 (a/2)]

cos(a)=[1-tan 2 (a/2)]/[1+tan 2 (a/2)]

tan(a)=[2tan(a/2)]/[1-tan 2 (a/2)]

三角函数记忆口诀

三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

温馨提示:内容均由网友自行发布提供,仅用于学习交流,如有版权问题,请联系我们。