实数的定义 实数的定义域

本篇文章给大家谈谈实数的定义,以及实数的定义域对应的知识点,希望对各位有所帮助。本文目录一览:
1、实数的概念是什么?


2、实数的定义是什么


3、实数的定义是什么呢?


4

本文最后更新时间:  2023-03-05 13:34:35

本篇文章给大家谈谈实数的定义,以及实数的定义域对应的知识点,希望对各位有所帮助。

本文目录一览: 1、实数的概念是什么? 2、实数的定义是什么 3、实数的定义是什么呢? 4、实数的定义 实数的概念是什么?

实数是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是唯一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

扩展资料:

实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

整数和小数的集合也是实数,而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数,所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。

实数的定义是什么

实数(real number)是有理数和无理数的总称,定义为与数轴上的实数,点相对应的数,是实数理论的核心研究对象,它与虚数共同构成复数。 实数可以分为有理数和无理数或代数和超越数。实数集通常用黑正体字母R表示,R表示n维实数空间。所有实数的集合则可称为实数系(real number system)或实数连续统。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。

实数的定义是什么呢?

实数被定义为:与数轴上的点相对应的数。也就是说实数和数轴上的点是一一对应的,右边的点表示的数比左边的点表示的数大。

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列。在实际运用中,实数经常被近似成一个有限小数。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

实数的定义

实数的定义:实数是有理数和无理数的总称。实数包括有理数和无理数,实数集通常用字母R表示。实数集与数轴上的点有着一一对应的关系,任一实数都对应着数轴上的唯一一个点。

实数是什么

1871年,德国数学家康托尔第一次提出了实数的严格定义。整数和小数的集合也是实数,实数是有理数和无理数的集合。而整数和分数统称有理数,所以整数和小数的集合也是实数。小数分为有限小数、无限循环小数、无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数,所以小数即为分数和无理数的集合,加上整数,即实数。

实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。

温馨提示:内容均由网友自行发布提供,仅用于学习交流,如有版权问题,请联系我们。