今天给各位分享基本求导公式的知识,其中也会对大学基本求导公式进行解释。本文目录一览:
1、16个求导公式是什么?
2、导数的基本公式
3、基本求导公式是什么
4、基本求
今天给各位分享基本求导公式的知识,其中也会对大学基本求导公式进行解释。
本文目录一览: 1、16个求导公式是什么? 2、导数的基本公式 3、基本求导公式是什么 4、基本求导公式是什么? 5、求导基本公式表 16个求导公式是什么?十六个基本导数公式
(y:原函数;y':导函数):
1、y=c,y'=0(c为常数)
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax, y'=1/(xlna)(a0且 a≠1);y=lnx,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
7、y=tanx,y'=(secx)^2=1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y'=1/√(1-x^2)。
10、y=arccosx,y'=-1/√(1-x^2)。
11、y=arctanx,y'=1/(1+x^2)。
12、y=arccotx,y'=-1/(1+x^2)。
13、y=shx,y'=ch x。
14、y=chx,y'=sh x。
15、y=thx,y'=1/(chx)^2。
16、y=arshx,y'=1/√(1+x^2)。
导数小知识:
1、导数的四则运算: (uv)'=uv'+u'v (u+v)'=u'+v' (u-v)'=u'-v' (u/v)'=(u'v-uv')/v^2 。
2、原函数与反函数导数关系(由三角函数导数推反三角函数的):
y=f(x)的反函数是x=g(y),则有y'=1/x'。
3、复合函数的导数:
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(称为链式法则)。
导数的基本公式导数的基本公式:y=c(c为常数)y'=0、y=x^ny'=nx^(n-1)。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
导数的性质:
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。
导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
基本求导公式是什么
24个基本求导公式可以分成三类。第一类是导数的定义公式,即差商的极限. 再用这个公式推出17个基本初等函数的求导公式,这就是第二类。最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。
1、f'(x)=lim(h-0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:
2、f(x)=a的导数, f'(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。就是当幂函数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数, 指数减1为指数. 这是幂函数的指数为正整数的求导公式。
4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.
5、f(x)=a^x的导数, f'(x)=a^xlna, a0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.
6、f(x)=e^x的导数, f'(x)=e^x. 即以e为底数的指数函数的导数等于原函数.
7、f(x)=log_a x的导数, f'(x)=1/(xlna), a0且a不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.
8、f(x)=lnx的导数, f'(x)=1/x. 即自然对数函数的导数等于1/x.
9、(sinx)'=cosx. 即正弦的导数是余弦.
10、(cosx)'=-sinx. 即余弦的导数是正弦的相反数.
11、(tanx)'=(secx)^2. 即正切的导数是正割的平方.
12、(cotx)'=-(cscx)^2. 即余切的导数是余割平方的相反数.
13、(secx)'=secxtanx. 即正割的导数是正割和正切的积.
14、(cscx)'=-cscxcotx. 即余割的导数是余割和余切的积的相反数.
15、(arcsinx)'=1/根号(1-x^2).
16、(arccosx)'=-1/根号(1-x^2).
17、(arctanx)'=1/(1+x^2).
18、(arccotx)'=-1/(1+x^2).
最后是利用四则运算法则、复合函数求导法则以及反函数的求导法则,就可以实现求所有初等函数的导数。设f,g是可导的函数,则:
19、(f+g)'=f'+g'. 即和的导数等于导数的和。
20、(f-g)'=f'-g'. 即差的导数等于导数的差。
21、(fg)'=f'g+fg'. 即积的导数等于各因式的导数与其它函数的积,再求和。
22、(f/g)'=(f'g-fg')/g^2. 即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。
23、(1/f)'=-f'/f^2. 即函数倒数的导数,等于函数的导数除以函数的平方的相反数。
24、(f^(-1)(x))'=1/f'(y). 即反函数的导数是原函数导数的倒数,注意变量的转换。
想要牢记这些基本的求导公式,一定要学会用自己的语言来描述它们,就像老黄上面所做的一样,才能把它们内化成自己的知识,在以后运用时做到得心应手。
最后以f(x)=sinx的导数f'(x)=-cosx为例,介绍它是怎么由导数的定义公式推导出来的:
f'(x)=lim(h-0)[(sin(x+h)-sin(x))/h]=lim(h-0)[2sin(h/2)cos((2x+h)/2)/h]=lim(h-0)[sin(h/2)/(h/2)]乘以lim(h-0)[cos((2x+h)/2]=lim(h-0)[cos((2x+h)/2]=cosx.
基本求导公式是什么?1、y=c,y'=0(c为常数)
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax, y'=1/(xlna)(a0且 a≠1);y=lnx,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
扩展资料:
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
1、C'=0(C为常数);
2、(Xn)'=nX(n-1) (n∈R);
3、(sinX)'=cosX;
4、(cosX)'=-sinX;
5、(aX)'=aXIna (ln为自然对数);
6、(logaX)'=1/(Xlna) (a0,且a≠1);
求导基本公式表求导基本公式表如下:
1、y=c,y'=0(c为常数)
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax, y'=1/(xlna)(a0且 a≠1);y=lnx,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
7、y=tanx,y'=(secx)^2=1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y'=1/√(1-x^2)。
10、y=arccosx,y'=-1/√(1-x^2)。
11、y=arctanx,y'=1/(1+x^2)。
12、y=arccotx,y'=-1/(1+x^2)。
13、y=shx,y'=ch x。
14、y=chx,y'=sh x。
15、y=thx,y'=1/(chx)^2。
16、y=arshx,y'=1/√(1+x^2)。