今天给各位分享零是有理数吗的知识,其中也会对一分之零是有理数吗进行解释。本文目录一览:
1、0是有理数吗
2、0是有理数吗??
3、0是有理数吗?
0是有理数吗
0是有理数。0
今天给各位分享零是有理数吗的知识,其中也会对一分之零是有理数吗进行解释。
本文目录一览: 1、0是有理数吗 2、0是有理数吗?? 3、0是有理数吗? 0是有理数吗0是有理数。
0是介于-1和1之间的整数。是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。
0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1。0不能作为分母出现,0的所有倍数都是0。0不能作为除数。
0作为小数部分的尾数时,0全部省略小数值不变,通常省略所有的0化简小数。但是保留几位小数时0不可以轻易省略,例如0.5是保留一位小数,0.5000是保留四位小数。
当0位于小数点后,而又不位于其他数字之前时,它表示一位有效数字。例如0.05有一位有效数字,0.0500却有三位有效数字,虽然这两个数相等,但是有效数字个数是不一样的。
扩展资料:
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
参考资料来源:百度百科——有理数
参考资料来源:百度百科——0
0是有理数吗??0是有理数。
0是介于-1和1之间的整数,是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1。0不能作为分母出现,0的所有倍数都是0,0不能作为除数。0是偶数,不是奇数。
扩展资料:
“0”的起源
印度数码中表示零的“点号”逐渐演变为圆,也就是“0”这一演变过程最迟完成于九世纪。印度876年出土的瓜廖尔石碑见证这一过程。该石碑上有记载无误的“0”,用圆圈表示零,是数学史的一大发明。
“0”的出现是数学史上一大创造。“0”一直被人们称为阿拉伯数字,其实,它的诞生地却是在古代印度,它的起源深受佛教大乘空宗的影响。大乘空宗流行于公元三至六世纪的古代印度。恰正是在它流行后期,在印度产生了新的整数的十进位值制记数法,规定出十个数字的符号。
以前计算到十数时空位加一点。用“.”表示,这时发明了“0”来代替。“0”的梵文名称为Sunya,汉语音译为“舜若”,意译为“空”。0乘以任何一个数,都使这个数变成0。
大乘空宗由印度龙树及其弟子提婆所创立,强调“一切皆空”。0的这一特殊就反映了“一切皆空”这一命题所留下的痕迹。0是正数和负数的分界点,也是解析几何中笛卡儿坐标轴上的原点。没有0也就没有原点,也就没有了坐标系,几何学大厦就会分崩离析。这种认识,同样有可能受了大乘空宗的启发。
大乘空宗的“空”,在某种意义上也可以看做是原点,是佛教认识万事万物的根本出发点。大乘空宗认为,无论是正面的天堂还是反面的地狱,不管是天神或是魔鬼,都不免入相,脱离不了轮回之苦。天神享尽福报,照样会堕入畜生道或饿鬼道,也有可能走向自己对立面而成为魔。
大乘佛教说“空”道“有”,都强调不可执著。这种说法与0的特殊在数学上表述,在哲学上有其相同之处。公元七世纪中叶,印度的记数法开始向西方传播,公元八世纪末传入阿拉伯国家。印度数字经阿拉伯人改进后传入欧洲,被称为阿拉伯数字或印度——阿拉伯数字。
参考资料来源:
百度百科——0
百度百科——阿拉伯数字
0是有理数吗?是有理数。
数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b,0也是有理数,整数也可看作是分母为一的分数,有理数的小数部分是有限或为无限循环的数,不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数是指整数和分数的统称,0是整数,所以0是有理数,有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
扩展资料:
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数,因而有理数集的数可分为正有理数、负有理数和零,由于任何一个整数或分数都可以化为十进制循环小数,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作ab或ba,任何两个不相等的有理数都可以比较大小,有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。
有理数是实数的紧密子集,每个实数都有任意接近的有理数,一个相关的性质是,仅有理数可化为有限连分数,依照它们的序列,有理数具有一个序拓扑,有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
参考资料来源:百度百科—有理数