本期预览
本文利用等温量热仪对智能手机的发热行为进行了研究,测定了不同品牌的手机在典型使用场景下的实时发热功率。
前言
随着消费者对智能手机高配置、高性能的追求,高端
本期预览
本文利用等温量热仪对智能手机的发热行为进行了研究,测定了不同品牌的手机在典型使用场景下的实时发热功率。
前言
随着消费者对智能手机高配置、高性能的追求,高端芯片、5G、大容量电池、快速充电、高刷屏等新技术不断在手机上得到应用,在大幅提高了手机性能的同时也加剧了手机发热问题。如果手机热设计不当,不仅会导致使用中应用程序频繁卡顿或闪退,还可能引起电池过热甚至起火、爆炸等严重后果。而有效进行手机热管理设计的前提和基础是对手机发热行为进行准确测量[1]。
目前,手机发热测试方法主要有以下两种:1. 功率计算法:通过手机部件的工作电压与电流乘积计算该部件的功耗,该方法可以准确测量处理器、主板等主要发热部件的发热功率,但无法测量包括手机电池在内的少数部件,因此该方法测定的发热功率小于真实值。2. 测温法:利用热电偶或热像仪测量整机或部件表面温度变化,并对发热量进行估算,准确性相对较低。
为丰富手机发热测试手段,并提升测量准确性,本文首次利用等温量热仪和热流量热的新方法测定得到了手机整机的实时发热功率,并比较了不同品牌的手机在不同使用场景下的发热特性。
实验部分
1. 样品准备
手机样品:华为P40、SAMSUNG S20、iPhone 13、vivo S10 Pro
(注:本实验所用样机均已正常使用一年左右,实验结果仅代表上述样品的特性。)
2. 实验条件
实验仪器:仰仪科技BIC-400A等温量热仪工作模式:热流法实验温度:15℃、25℃、35℃手机工况:充电、录像、微信视频、游戏、亮屏静置
图1 (a)手机样品及(b) BIC-400A等温量热仪示意图
3. 测试过程
将两只相同的手机按图2所示的装样方式放置于等温量热腔内,其中一只手机作为参比,始终处于关机状态;另一只作为样品进行测试。设置实验参数后,等待仪器自动控温至预设温度,随后通过远程控制软件对手机样品进行特定的操作。仪器测定操作过程中样品与参比之间的温差变化,并根据温差与热流之间的增益系数计算得到手机实时发热功率。
图2 等温量热仪腔体结构及热流法原理示意图
实验结果
1. 手机充电
图3 充电过程手机产热功率曲线
本实验使用各个品牌的原装充电器,将亏电关机状态下的手机充至满电状态。如图3所示,由于各手机充电功率和倍率有所不同,因此充电完成时间和发热功率都存在差异。由于充电工况下手机的主要热源为锂电池,因此整机的发热功率变化趋势与锂电池充电情况下的产热规律相一致。
2. 高清录像
图4 录像过程手机产热功率曲线
本实验将手机清空后台,仅打开录像功能,并设置为4K、60FPS(三星为UKD)模式,录制20分钟的视频。如图4,可以发现,华为、苹果及vivo手机的发热功率都在6-7W附近,而SAMSUNG S20的发热情况明显小于其余三款手机,这可能是由于UKD模式的功耗相对较低。
3. 微信视频
图5 微信视频过程手机产热功率曲线
本实验将手机清空后台,仅开启微信,并进行30分钟微信视频,得到如图5所示实验结果,可以发现华为P40的发热功率明显小于其余三款手机,在本工况下具有明显的能耗优势。
4. 大型游戏
图6 (a)运行王者荣耀下手机产热功率曲线及(b)华为手机不同阶段产热特征详解
本实验进行王者荣耀游戏测试,并均将画质调整为最高。实验分为两个阶段,第一阶段在充电情况进行游戏,第二阶段仅运行游戏。如图6所示,所有手机第一阶段的发热情况均高于第二阶段;而各样机之间对比,华为P40的总体表现最佳,vivo S10 Pro 其次,iPhone 13在第一阶段的发热较高,排名第三,而SAMSUNG S20的发热情况最为严重。
5. 亮屏静置
图7 亮屏静置手机产热功率曲线
在完成上述实验后,将所有手机亮屏至主界面进行静置,测定手机在静置情况下的基准发热功率。可以发现,华为P40和SAMSUNG S20的发热功率较低,仅为1W左右,iPhone 13排名第三,而vivo S10 Pro亮屏功率最高,接近3W。上述现象可能与各品牌不同的后台进程管理策略有关。
6. 不同工作温度测试
图8 亮屏静置手机产热功率曲线
将华为P40分别置于15℃、25℃、35℃的温度下进行实验,如图8所示,手机发热功率随温度上升。而锂电池充放电产热在该温度范围内通常会随温度下降,这说明处理器、主板这些部件的发热特性与使用温度之间存在较明显的正相关关系。
结论
利用BIC-400A等温量热仪可以高效、准确地测量手机在各种应用场景下的产热特征,并进行包括温度在内不同工况下的研究,帮助研究人员优化手机热管理设计。
上世纪70年代,一个叫做戈登·摩尔的人凭着自己对于半导体行业的感觉提出了预测,每18个月就能将芯片的性能提高一倍。这个预测在过去的40年中一路证明了自己的正确,而芯片中晶体管的密度也跟着翻倍,翻倍,再翻倍。
对于熟悉芯片的人来说,高性能通常伴生这高发热,随着我们对电子产品的依赖程度日益增加,手机、平板、笔记本电脑等的发热问题,不仅对使用体验造成负面影响,同时还阻碍着生产商设计出更加美观、轻便的新产品。
要解决电子产品,尤其是微电子器件的发热问题,首先要理解这些热量产生的根本原因。而这个答案可能就藏在廖浡霖博士最新发表的论文中。这位前四川省高考状元师从陈刚教授,今年从麻省理工学院获得了博士学位。
他所在的研究团队精确测量了电子与声子的相互作用,所得成果不仅解释了微电子设备的发热原因,同时还能用以进一步提高热电材料的性能。
随着半导体芯片的发展,越来越多的晶体管被塞入了越来越小的空间中。麻省理工学院的工程师最新发现,手机、笔记本电脑等其他电子设备会发烫,主要原因在于电子和携带热能的声子相互作用。
这样的相互作用曾一度被科学家们忽略,然而最新的研究结果显示,在微电子设备中,这种相互作用对散热起到了重大的影响,相关的研究结果发表在了10月12日的《Nature Communication》上。
在实验中,研究小组使用精确定时的激光脉冲在一片超薄硅薄膜中测量了电子和声子的相互作用。测量结果显示:随着薄膜中电子浓度增加,会有更多声子因被电子散射而导致散热困难。
麻省理工学院(MIT)毕业的廖浡霖博士是这篇论文的第一作者,他说道:“电脑运行时会产生热量,你肯定希望这些热量快速散掉(被声子带走)。但是,如果声子被电子散射,它们的散热效果就会变差。随着芯片越造越小,这个问题必须得到解决。”
但凡事既有一弊,必有一利,同样的现象对热电发电却会带来好处。热电材料可以直接将热能转化为电能,被散射掉的声子越多,意味着越少的热量流失,因此会大大提高热电装置的效率和性能。
热电材料具有非常广阔的应用范围,其中包括了热量探测仪和NASA最新提出用于太空探测设备的核电池。
声子被电子散射的现象并不是什么新发现,但是长期以来一直被科学家们忽略,随着半导体技术的不断发展,电子的浓度变得越来越高,这种现象变得不可忽视。
科学家们必须思考如何更操控电子-声子相互作用,这样才能一方面增加热电装置的效率,而另一方面防止微电子设备发烫。
这篇论文其他作者都来自MIT,其中包括了廖浡霖的博导,MIT机械工程系主任陈刚教授。
声子和电子的碰碰车游戏
无论是在晶体管(半导体材料,如硅)还是导线(导体材料,如铜)中,电子都是电流运动的主要媒介。电阻之所以会存在,主要原因是电子流动时会遇到路障——携带热能的声子会与电子碰撞,将其弹出电流的路径外。
很久以来,科学家就在研究电子-声子相互作用所带来的各种影响,但侧重点主要集中于电子,而没有太关注这种相互作用是如何影响声子的。
“科学家很少研究这个相互作用对声子的影响,因为他们认为这个效应不重要,”廖浡霖说道,“但是牛顿第三定律告诉我们,每个力都有一个反作用力。只是我们不知道在什么情况下反作用力才会变得重要。”
散射,散热难以两全
根据廖浡霖和同事先前的计算,当电子浓度超过每立方厘米1019个时,在硅(半导体材料最常用到的物质)中电子和声子的相互作用会对声子产生巨大的散射作用。当电子浓度到达每立方厘米1021个时,材料的散热能力将因声子的散射而降低50%。
“这是相当显著的效应,但很多人却对此存疑,”廖浡霖说道。
这主要是因为在之前用到高浓度电子材料的实验中,科学家们都假设散热能力的下降不是因为电子-声子相互作用,而是由于材料的缺陷造成的。
这些缺陷的存在是因为人们对材料进行了掺杂(doping),以硅为例,磷和硼是常用的掺杂原子,目的是为了增加材料的电子浓度。
因此,要验证廖浡霖的理论,就必须分离电子-声子相互作用和缺陷对散热能力造成的影响。具体的实施方法就是,提高材料中的电子浓度,但不能引入任何缺陷。
研究小组发展了一种称作“三脉冲声光波谱”(three-pulse photoacoustic spectroscopy)的技术,通过光学的方法精确地在硅晶体薄膜中增加电子的浓度,并测量材料中的对声子产生的任何影响。
这个技术是对传统的“二脉冲声光波谱”(two-pulse photoacoustic spectroscopy)的扩展,在传统的方法中,科学家们通过精确调控,对材料发生两束定时精准的激光。第一束激光在材料中产生声子脉冲,第二束则用来测量声子脉冲的散射或衰减。
廖浡霖引入了第三束激光,这样就能精确地增加硅材料中的电子浓度而不引入任何缺陷。在发射了第三束激光后,测量结果显示,声子脉冲衰减时间明显缩短,这表明了电子浓度的增加了声子的散射并抑制了它的活动。
实验结果显示,第三束激光的引入会造成声子脉冲衰减时间的缩短,激光的强度越大(电子的浓度越高),声子脉冲的衰减时间就越短。
这个结果让廖浡霖团队非常兴奋,因为这很好地吻合了他们之前的计算结果。
“我们现在可以确定效应确实非常明显,而且我们在实验中证实了它,”廖浡霖说道,“这是首个可以直接探测电子-声子相互作用对声子的影响的实验。”
有趣的是,每立方厘米1019个电子的浓度,比现有的一些晶体管还要低,换句话说,最新发现的这种现象,是部分现有的微电子发热发烫的元凶之一。
“根据我们的研究,随着电路的尺寸越来越小,这个效应将会越来越重要,”廖浡霖说道,“我们必须认真考虑这个效应,并且研究如何利用或避免它带来的影响。”
夏天也是智能手机最容易“热”的季节。为什么会发热?发烫有什么不好?天气变热时我们该怎么办?让我们再检查一下。
为什么我的智能手机会变热?
智能手机有许多容易产生热量的部件,例如处理器(CPU/GPU/通信芯片)、显示器(LCD 或有机 EL)和电池。当然,智能手机的主体配备了向外部散热的机制,但视情况而定,可能无法完全散热。
原因 1:室外温度和阳光直射
智能手机发热的原因之一是使用智能手机的地方的温度。当温度较高时,智能手机内部的热量很难散发到外部。闷热的热量使您的智能手机变得越来越热。智能手机设置了“适当的操作温度(环境温度)和湿度” 正常运行时所有型号的阈值都是35摄氏度,但其他型号的条件基本相同。请勿在温度超过 35 摄氏度的炎热地方使用智能手机。
夏季天气晴朗时,阳光直射会直接温暖您的智能手机。不仅要注意温度,还要注意不要将智能手机暴露在阳光直射下,如果你把它放在 汽车 的仪表板上,仪表板的热量可能会进一步加热它。
原因 2:处理器负载高
智能手机处理器是主要的热量来源之一。尤其是以下几点可以帮助升温。
在玩 游戏 应用程序时(尤其是图形处理负载很重时)
相机拍摄期间(尤其是高分辨率视频拍摄和静止图像的连续拍摄)
观看视频(尤其是观看高分辨率视频)
长期连续数据通信(尤其是视频和音乐的流媒体播放)
简单地说,处理器上的持续负载使温度更容易上升。如上所述,智能手机本身的散热能力在高温的地方可能跟不上。
原因3:电池发热
电池 作为智能手机的热源经常被忽视。
电池在放电或充电时会产生热量。通常当流动的电流量增加时,它会散发出大量的热量。电池产生的热量不仅在智能手机处理器长时间加载时增加,而且在电池快速充电时也会增加。
如果您在使用智能手机时充电,除了处理器之外,电池还会产生热量。建议您在充电时尽量避免使用智能手机,因为过热会导致电池老化。尤其要避免处理密集型的 游戏 和视频录制。
当您的智能手机变热时会发生什么?
当处理器、电池等的温度上升到一定程度以上时,智能手机会自动限制其功能并尝试降低温度。这是为了防止因发热引起的故障。
如何应用功能限制取决于终端和情况。对于 Android 智能手机,以下限制使用。
极度放缓
使用部分或全部相机功能的限制
强行降低屏幕亮度或强行关闭屏幕
停止充电
停止USB主机功能
在 iPhone 的情况下,除紧急呼叫外的所有功能都将被限制,直到主机温度下降。
如果我的智能手机变热怎么办?
如果我的智能手机变热怎么办?以下是要采取的一些措施。
对策一:移至阴凉处并关闭电源
当您的智能手机变热时,我们建议将其移至阴凉处并将其关闭。如果你在阳光最直接的地方,移到树荫下。
当它变冷到一定程度时,关闭智能手机的电源,然后再打开。
措施二:停止充电
当大电流流过时,电池会发热。如果充电时过热,请立即停止充电。让我们等它冷却到一定程度再继续充电。
对策三:推迟重载功能和应用的使用时间
随着处理器负载的增加,整个智能手机产生的热量也会增加。当您的智能手机变热时,请暂时停止使用会给您的智能手机带来负担的功能和应用程序,例如玩 游戏 和拍摄视频。最好关掉屏幕。
冷却智能手机时你不应该做的事情
当您的智能手机变热时,无论如何冷却它很重要。但是,有些事情您不应该做。
不要这样做 #用冰块或冷冻冰袋冷却
如果您使用冰块或冷冻冰袋,您可以快速冷却热的智能手机。但是,不要这样做,因为体内的水分可能会“凝结”。
这也适用于防水端子。防水装置将抵御来自身体外部的湿气,但“不受保护”地防止湿气粘附在内部,水滴会因快速冷却而导致故障。